(本小题满分14分) 如图,已知抛物线与坐标轴分别交于A、B、C三点,过坐标原点O的直线与抛物线交于M、N两点.分别过点C、D作平行于轴的直线、.(1)求抛物线对应的二次函数的解析式;(2)求证以ON为直径的圆与直线相切;(3)求线段MN的长(用表示),并证明M、N两点到直线的距离之和等于线段MN的长.
如图所示,在平行六面体ABCD-A1B1C1D1中,设=a,=b,=c,M,N,P分别是AA1,BC,C1D1的中点,试用a,b,c表示以下各向量: (1);(2);(3)+.
如图正方体中,,求与所成角的余弦.
正方体的棱长为2,分别为、的中点。 求:与所成角的余弦值.
直线与双曲线的右支交于不同的两点A、B,求实数k的取值范围.
设A、B分别是直线和上的两个动点,并且,动点P满足,记动点P的轨迹为C,求轨迹C的方程.