(本小题满分12分)对于定义域为D的函数,若同时满足下列条件:①在D内单调递增或单调递减;②存在区间[],使在[]上的值域为[];那么把()叫闭函数。(1)求闭函数符合条件②的区间[];(2)判断函数是否为闭函数?并说明理由;(3)判断函数是否为闭函数?若是闭函数,求实数的取值范围。
已知椭圆两焦点为和,P为椭圆上一点,且,求的面积.
已知椭圆两个焦点的坐标分别是,,并且经过点,求它的标准方程.
给定两命题:已知 :;:.若是的必要而不充分条件,求实数的取值范围.
已知函数. (1)求函数的单调区间和极值; (2)若对任意的,恒有成立,求的取值范围; (3)证明:.
已知函数,(为常数). (1)若在处的切线过点(0,-5),求的值; (2)设函数的导函数为,若关于的方程有唯一解,求实数的取值范围; (3)令,若函数存在极值,且所有极值之和大于,求实数的取值范围.