(本小题满分13分)(1)已知A={a+2,(a+1)2,a2+3a+3}且1∈A,求实数a的值;(2)已知M={2,a,b},N={2a,2,b2}且M=N,求a,b的值.
(本小题满分12分)一袋子中有大小、质量均相同的10个小球,其中标记“开”字的小球有5个,标记“心”字的小球有3个,标记“乐”字的小球有2个.从中任意摸出1个球确定标记后放回袋中,再从中任取1个球.不断重复以上操作,最多取3次,并规定若取出“乐”字球,则停止摸球.求: (Ⅰ)恰好摸到2个“心”字球的概率; (Ⅱ)摸球次数的概率分布列和数学期望.
(本小题满分10分)在中,、、分别是三内角的对应的三边,已知。 (Ⅰ)求角的大小; (Ⅱ)若,判断的形状。
(本小题满分13分) 设函数 (1)若的极值点,求实数a的值; (2)若时,函数图象恒不在图象的下方,求实数a的取值范围。
(本小题满分13分)工厂生产某种产品,次品率p与日产量x(万件)间的关系为:(c为常数, 且0<c<6).已知每生产1件合格产品盈利3元, 每出现1件次品亏损1.5元. (1)将日盈利额y(万元)表示为日产量x(万件)的函数; (2)为使日盈利额最大,日产量应为多少万件?(注:次品率=×100%)
(本小题满分12分) 设函数(0<<1). (1)求函数的单调区间; (2)若当时,恒有成立,试确定的取值范围.