求函数在[2,5]上的最大值和最小值
已知数列为等比数列,其前n项和为,且满足,成等差数列.(1)求数列的通项公式;(2)已知,记,求数列前n项和.
设函数.(1)求的值域;(2)记△ABC的内角A,B,C的对边长分别为a,b,c,若,求a的值.
定义:若在上为增函数,则称为“k次比增函数”,其中. 已知其中e为自然对数的底数.(1)若是“1次比增函数”,求实数a的取值范围;(2)当时,求函数在上的最小值;(3)求证:.
已知椭圆的离心率,且直线是抛物线的一条切线.(1)求椭圆的方程;(2)点P 为椭圆上一点,直线,判断l与椭圆的位置关系并给出理由;(3)过椭圆上一点P作椭圆的切线交直线于点A,试判断线段AP为直径的圆是否恒过定点,若是,求出定点坐标;若不是,请说明理由.
如图,四棱锥F-ABCD的底面ABCD是菱形,其对角线AE、CF都与平面ABCD垂直,AE=1,CF=2.(1)求二面角B-AF-D的大小;(2)求四棱锥E-ABCD与四棱锥F-ABCD公共部分的体积.