如图,在边长为4的正方形中,点在上从向运动,连接交于点.⑴试证明:无论点运动到上何处时,都有△≌△;⑵当点在上运动到什么位置时,△的面积是正方形面积的;⑶若点从点运动到点,再继续在上运动到点,在整个运动过程中,当点 运动到什么位置时,△恰为等腰三角形.
.如图,⊙O是△的外接圆,,为⊙O的直径,且,连结.求BC的长.
用配方法将二次函数化为的形式(其中 为常数),写出这个二次函数图象的顶点坐标 和对称轴方程,并在直角坐标系中画出他的示意图.
已知:如图,∠1=∠2,AB•AC=AD•AE.求证:∠C=∠E.
(本题6分)已知:如右图,在直径为10的⊙O中,做两条互相垂直的直径AE和BF,在弧EF上取点C,弦AC交BF于P,弦CB交AE于Q,求证:四边形APQB的面积等于25.
(本题10分)如右图,点A是△ABC和△ADE的公共顶点,∠BAC+∠DAE=180°,AB=AE,AC=AD,点M是DE的中点,直线AM交直线BC于点N.将△ADE绕点A旋转,在旋转的过程中,请探究∠ANB与∠BAE的数量关系,并加以证明.