某巡警车在一条南北大道上巡逻,某天巡警车从岗亭A处出发,规定向北方向为正,当天行驶纪录如下(单位:千米)+10,-9,+7,-15,+6,-5,+4,-2(1)、最终巡警车是否回到岗亭A处?若没有,在岗亭何方,距岗亭多远?(2)、巡警车行驶1千米耗油0.2升,油箱有油10升,够不够?若不够,途中还需补充多少升油?
如图,已知:抛物线,关于轴对称;抛物线,关于轴对称。 如果抛物线的解析式是,那么抛物线的解析式 是.
如图,在直角坐标系中,点在轴上,⊙与轴交于点,.直线与坐标轴交于C 、D两点,直线在⊙的左侧.求的面积;当直线向右平移,第一次与⊙相切时,求直线的解析式.
如图,已知AB是⊙O的直径,锐角∠DAB的平分线AC交⊙O于点C,作CD⊥AD,垂足为D,直线CD与AB的延长线交于点E.求证:直线CD为⊙O的切线;当AB=2BE,且CE=时,求AD的长.
如图,△OAB的底边与⊙O相切,切点为C,且OA=OB,⊙O与OA、OB分别交于D、E两点,D、E分别为OA、OB的中点。求的度数;若阴影部分的面积为,求⊙O的半径r
一个不透明的纸盒中装有大小相同的黑、白两种颜色的围棋,其中白色棋子3个(分别用白A、白B、白C表示),若从中任意摸出一个棋子,是白色棋子的概率为.求纸盒中黑色棋子的个数;第一次任意摸出一个棋子(不放回),第二次再摸出一个棋子,请用树形图或列表的方法,求两次摸到相同颜色棋子的概率.