如图,△ABC中,点O是AC边上的一动点,过O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)求证:OE=OF;(2)当点O运动到何处时,四边形AECF是矩形,并证明你的结论;
[问题情境]勾股定理是一条古老的数学定理,它有很多种证明方法,我国汉代数学家赵爽根据弦图,利用面积法进行证明.著名数学家华罗庚曾提出把“数形关系(勾股定理)”带到其他星球,作为地球人与其他星球“人”进行第一次“谈话”的语言. [定理表述]请你根据图(1)中的直角三角形叙述勾股定理(用文字及符号语言叙述). [尝试证明]以图(1)中的直角三角形为基础,可以构造出以a、b为底,以a+b为高的直角梯形(如图(2)),请你利用图(2)验证勾股定理. [知识拓展]利用图(2)中的直角梯形,我们可以证明.其证明步骤如下: ∵BC=a+b,AD=________, 又∵在直角梯形ABCD中,有BC________AD(填大小关系),即________, ∴.
如图所示,牧童在A处放牛,其家在B处,A,B处到河岸的距离分别为AC=400m,BD=200m,且CD=800m,牧童从A处把牛牵到河边饮水后再回家.试问在何处饮水,所走路程最短?最短路程是多少?
如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3. (1)求DE的长; (2)求△ADB的面积.
如图是用硬纸板做成的四个全等的直角三角形(两直角边长分别是a、b,斜边长为c)和一个正方形(边长为c).请你将它们拼成一个能验证勾股定理的图形. (1)画出拼成的这个图形的示意图; (2)用(1)中画出的图形验证勾股定理.
某车间加工螺钉和螺母,当螺钉和螺母恰好配套(一个螺钉配一个螺母)时就可以包装运进库房.若一名工人平均每天可以加工螺钉120个或螺母96个,该车间共有工人81名,则应怎样分配人力,才能使每天生产出来的零件及时包装运进库房?