(本小题满分14分)如图,建立平面直角坐标系,轴在地平面上,轴垂直于地平面,单位长度为1千米,某炮位于坐标原点.已知炮弹发射后的轨迹在方程表示的曲线上,其中与发射方向有关,炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标不超过多少时,炮弹可以击中它?请说明理由.
设 F 1 , F 2 分别为椭圆 C : x 2 a 2 + y 2 b 2 = 1 a > b > 0 的左右焦点,过 F 2 的直线 l 与椭圆 C 相交于 A , B 两点,直线 l 的倾斜角为 60 ° , F 1 到直线 l 的距离为 2 3 . (Ⅰ)求椭圆 C 的焦距; (Ⅱ)如果 A F 2 ⇀ = 2 F 2 B ⇀ ,求椭圆 C 的方程。
为了比较注射 A , B 两种药物后产生的皮肤疱疹的面积,选200只家兔做实验,将这200只家兔随即地分成两组。每组100只,其中一组注射药物 A ,另一组注射药物 B .下表1和表2分别是注射药物A和药物B后的实验结果。(疱疹面积单位: m m 2 ) 表1:注射药物 A 后皮肤疱疹面积的频数分布表
表2:注射药物 B 后皮肤疱疹面积的频数分布表
(Ⅰ)完成下面频率分布直方图,并比较注射两种药物后疱疹面积的中位数大小;
(Ⅱ)完成下面 2 × 2 列联表,并回答能否有99.9%的把握认为"注射药物 A 后的疱疹面积与注射药物 B 后的疱疹面积有差异". 表3:
在 △ A B C 中, a , b , c 分别为内角 A , B , C 的对边,且 2 a sin A = ( 2 b + c ) sin B + ( 2 c + b ) sin C . (Ⅰ)求 A 的大小; (Ⅱ)若 sin B + sin C = 1 ,是判断 △ A B C 的形状.
如图,棱柱 A B C - A 1 B 1 C 1 的侧面 B C C 1 B 1 是菱形, B 1 C ⊥ A 1 B . (Ⅰ)证明:平面 A 1 B 1 C ⊥ 平面 A 1 B C 1 ; (Ⅱ)设 D 是 A 1 C 1 上的点,且 A B 1 / / 平面 B 1 C D ,求 A 1 D · D C 1
已知 a 、 b 、 c 均为正数,证明: a 2 + b 2 + c 2 + 1 a + 1 b + 1 c 2 ≥ 6 3 ,并确定 a 、 b 、 c 为何值时,等号成立。