从甲地到乙地有一班车在9∶30到10∶00到达,若某人从甲地坐该班车到乙地转乘9∶45到10∶15出发的汽车到丙地去,问他能赶上车的概率是多少?
(本小题满分12分) 从1、2、3、4、5、8、9这7个数中任取三个数,共有35种不同的取法(两种取法不同,指的是一种取法中至少有一个数与另一种取法中的三个数都不相同)。 (Ⅰ)求取出的三个数能够组成等比数列的概率; (Ⅱ)求取出的三个数的乘积能被2整除的概率。
(本小题满分12分) 已知向量且。 (Ⅰ)求的值; (Ⅱ)求函数的值域。
已知抛物线及点,直线斜率为且不过点,与抛物线交于点、两点. (Ⅰ)求直线在轴上截距的取值范围; (Ⅱ)若、分别与抛物线交于另一点、,证明:、交于定点.
(本小题满分14分) 设函数 (Ⅰ)研究函数的极值点; (Ⅱ)当p>0时,若对任意的x>0,恒有,求p的取值范围; (Ⅲ)证明:
(本题满分14分) 已知函数,,是函数的导函数. (I)若,求函数的单调递减区间; (II)若,,求方程有实数根的概率.