如图所示,AD、AE分别是△ABC的角平分线和高,若∠B=50°,∠C=70°,求∠DAC的度数.
(本题满分12分)在平面直角坐标系中,抛物线交轴于两点,交轴于点,已知抛物线的对称轴为.
⑴求这个抛物线的解析式;⑵在抛物线的对称轴上是否存在一点,使点到A、C两点间的距离之和最大.若存在,求出点的坐标;若不存在,请说明理由.(3)如果在轴上方平行于轴的一条直线交抛物线于两点,以为直径作圆恰好与轴相切,求此圆的直径.
(本题满分12分)正方形边长为4,、分别是、上的两个动点,当点在上运动时,保持和垂直,⑴证明:;⑵设,梯形的面积为,求与之间的函数关系式;⑶梯形的面积可能等于12吗?为什么?
(本题满分10分)李经理到张家果园里一次性采购一种水果,他俩商定:李经理的采购价y(元/吨)与采购量x(吨)之间函数关系的图象如图中的折线段ABC所示(不包含端点A,但包含端点C).⑴如果采购量x满足,求y与x之间的函数关系式;⑵已知张家种植水果的成本是2 800元/吨,李经理的采购量x满足,那么当采购量为多少时,张家在这次买卖中所获的利润w最大?最大利润是多少?
(本题满分10分)用铝合金型材做一个形状如图1所示的矩形窗框,设窗框的一边为xm,窗户的透光面积为ym2,y与x的函数图象如图2所示.(图中顶点横坐标为1,纵坐标为1.5)⑴写出y与x之间的函数关系式,指出当x为何值时,窗户透光面积最大? ⑵当窗户透光面积1.125m2时,窗框的两边长各是多少?
已知抛物线与x轴有两个不同的交点.(1) 求抛物线的对称轴;(2) 求c的取值范围;(3)若此抛物线与x轴两交点之间的距离为2,求c的值.