(本题分12分)如图,斜率为1的直线过抛物线的焦点,与抛物线交于两点A、B, 将直线按向量平移得到直线,为上的动点,为抛物线弧上的动点.(Ⅰ) 若 ,求抛物线方程.(Ⅱ)求的最大值.(Ⅲ)求的最小值.
已知函数,(x∈(- 1,1). (Ⅰ)判断f(x)的奇偶性,并证明; (Ⅱ)判断f(x)在(- 1,1)上的单调性,并证明.
已知二次函数f(x)图象过点(0,3),它的图象的对称轴为x = 2, 且f(x)的两个零点的平方和为10,求f(x)的解析式.
定义在实数R上的函数y= f(x)是偶函数,当x≥0时,. (Ⅰ)求f(x)在R上的表达式; (Ⅱ)求y=f(x)的最大值,并写出f(x)在R上的单调区间(不必证明)
计算下列各式 (Ⅰ) (Ⅱ)
(本小题满分14分)已知圆方程:,求圆心到直线的距离的取值范围.