OC是从∠AOB的顶点O引出的一条射线,若∠AOB=90°,∠AOB= 2∠BOC, 求∠AOC的度数.
解方程组:
如图,Rt△ABC中,AC=BC=8,∠ACB=90º,直角边AC在x轴上,B点在第二象限,A(2,0),AB交y轴于E,将纸片过E点折叠使BE与EA所在直线重合,得到折痕EF(F在x轴上),再展开还原沿EF剪开得到四边形BCFE,然后把四边形BCFE从E点开始沿射线EA平移,至B点到达A点停止.设平移时间为t(s),移动速度为每秒1个单位长度,平移中四边形B1C1F1E1与△AEF重叠的面积为S. (1)求折痕EF的长; (2)直接写出S与t的函数关系式及自变量t的取 值范围. (3)若四边形BCFE平移时,另有一动点H与四边形BCFE同时出发,以每秒个单位长度从点A沿射线AC运动,试求出当t为何值时,△HE1E为等腰三角形?
某公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的日销售量m(件)与时间t(天)的关系如下表:
未来40天内,前20天每天的价格y1(元/件)与时间t(天)的函数关系式为 (且t为整数),后20天每天的价格y2(元/件)与时间t(天)的函数关系式 为(且t为整数). 下面我们就来研究销售这种商品的有关问题:(1)分析上表中的数据,确定一个满足这些数据的m(件)与t(天)之间的关系式;(2)请预测未来40天中哪一天的日销售利润最大,最大日销售利润是多少?(3)在实际销售的前20天中,该公司决定每销售一件商品就捐赠a元利润(a<4)给希望工程. 公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t(天)的增大而增大,求a的取值范围.
如图,△AGB中,以边AG、AB为边分别作正方形AEFG、正方形ABCD,线段EB和GD相交于点H, tan∠AGB=,点G、A、C在同一条直线上.(1)求证:EB⊥GD;(2)若∠AG=,求BE的长.
为了掌握我市中考模拟数学考试卷的命题质量与难度系数,命题教师赴我市某地选取一个水平相当的初三年级进行调研,命题教师将随机抽取的部分学生成绩(得分为整数,满分为150分)分为5组:第一组75~90;第二组90~105;第三组105~120;第四组120~135;第五组135~150.统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图.观察图形的信息,回答下列问题:(1)本次调查共随机抽取了该年级 名学生,并将频数分布直方图补充完整;(2)若将得分转化为等级,规定:得分低于90分评为“D”,90~120分评为“C”,120~135分评为“B”,135~150分评为“A”.那么该年级1500名考生中,考试成绩评为“B”的学生有________名;(3)如果第一组只有一名是女生,第五组只有一名是男生,针对考试成绩情况,命题教师决定从第一组、第五组分别随机选出一名同学谈谈做题的感想.请你用列表或画树状图的方法求出所选两名学生刚好是一名女生和一名男生的概率.