已知函数.(Ⅰ)当时,如果函数仅有一个零点,求实数的取值范围;(Ⅱ)当时,试比较与1的大小;(Ⅲ)求证:.
已知函数有下列性质:“若,则存在,使得”成立(I)证明:若,则唯一存在,使得;(II) 设A、B、C是函数图象上三个不同的点,试判断△ABC的形状,并说明理由
已知函数,.(I)求的最值;(II) 设,函数,;若对于任意,总存在,使得成立,求的取值范围
已知函数.(I)求的单调区间; (II) 若在处取得极值,直线与的图象有三个不同的交点,求的取值范围。
已知数列中,(为常数);是的前项和,且是与的等差中项。(I)求;(II)猜想的表达式,并用数学归纳法加以证明。
某工厂生产某种产品,已知该产品的月生产量(吨)与每吨产品的价格(元/吨)之间的关系式为:,且生产吨的成本为(元).问该厂每月生产多少吨产品才能使利润达到最大?最大利润是多少?(利润=收入─成本)