已知函数.(Ⅰ)当时,如果函数仅有一个零点,求实数的取值范围;(Ⅱ)当时,试比较与1的大小;(Ⅲ)求证:.
如图,在平面直角坐标系中,过轴正方向上一点任作一直线,与抛物线相交于两点.一条垂直于轴的直线,分别与线段和直线交于点. (1)若,求的值; (2)若为线段的中点,求证:为此抛物线的切线; (3)试问(2)的逆命题是否成立?说明理由.
如图,已知是棱长为的正方体,点在上,点在上,且. (1)求证:四点共面; (2)若点在上,,点在上,,垂足为,求证:平面; (3)用表示截面和侧面所成的锐二面角的大小,求.(4分
(本小题满分14分) 设数列满足,. (Ⅰ)求数列的通项; (Ⅱ)设,求数列的前项和.
(本小题满分12分) 从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件:“取出的2件产品中至多有1件是二等品”的概率. (1)求从该批产品中任取1件是二等品的概率; (2)若该批产品共100件,从中任意抽取2件,表示取出的2件产品中二等品的件数,求的分布列.
(本小题满分12分)已知函数. (Ⅰ)求函数的最小正周期; (Ⅱ)求函数在区间上的最小值和最大值.