解不等式组:,并判断﹣1、这两个数是否为该不等式组的解.
已知函数(是常数) (1)若该函数的图像与轴只有一个交点,求的值; (2)若点在某反比例函数的图像上,要使该反比例函数和二次函数都是随的增大而增大,求应满足的条件以及的取值范围; (3)设抛物线与轴交于两点,且,,在轴上,是否存在点P,使△ABP是直角三角形?若存在,求出点P及△ABP的面积;若不存在,请说明理由。
如图,矩形ABCD中,AB=12cm,AD=16cm,动点E、F分别从A点、C点同时出发,均以2cm/s的速度分别沿AD向D点和沿CB向B点运动。 (1)经过几秒首次可使EF⊥AC? (2)若EF⊥AC,在线段AC上,是否存在一点P,使?若存在,请说明P点的位置,并予以证明;若不存在,请说明理由。
如图,在△ABC中,∠C=90°,AC+BC=9,点O是斜边AB上一点,以O为圆心2为半径的圆分别与AC、BC相切于点D、E。 (1)求AC、BC的长; (2)若AC=3,连接BD,求图中阴影部分的面积(取3.14)。
如图,在等腰Rt△ABC中,∠C=90°,正方形DEFG的顶点D地边AC上,点E、F在边AB上,点G在边BC上。 (1)求证:△ADE≌△BGF; (2)若正方形DEFG的面积为16cm,求AC的长。
为增强学生的身体素质,教育行政部门规定学生每天户外活动的平均时间不少于1小时,为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制成如图中两幅不完整的统计,请你根据图中提供的信息解答下列问题: (1)在这次调查中共调查了多少名学生? (2)求7户外活动时间为0.5小时的人数,并补充频数分布直方图; (3)求表示户外活动时间为2小时的扇形圆心角的度数; (4)本次调查中学生参加户外活动的平均时间是否符合要求?户外活动时间的众数和中位数各是多少?