如图所示,已知抛物线的顶点为坐标原点O,矩形ABCD的顶点A,D在抛物线上,且AD平行x轴,交y轴于点F,AB的中点E在x轴上,B点的坐标为(2,1),点P(a,b)在抛物线上运动.(点P异于点O)(1)求此抛物线的解析式.(2)过点P作CB所在直线的垂线,垂足为点R,①求证:PF=PR;②是否存在点P,使得△PFR为等边三角形?若存在,求出点P的坐标;若不存在,请说明理由;③延长PF交抛物线于另一点Q,过Q作BC所在直线的垂线,垂足为S,试判断△RSF的形状.
先化简,再求值:,其中。
)解方程:(1);(2)
计算:
如图:点C在线段BD上,AB∥ED,∠A=∠1,∠E=∠2. (1)若∠B=40°,求∠1、∠2的度数; (2)判断AC与CE的位置关系,并说明理由.
上学期,我们学习了解一元一次方程及用一元一次方程解决实际问题.本学期,我们又学习了解二元一次方程组,试用二元一次方程组及以前解决实际问题的经验解决下列问题:某校初一(1)班45名同学为“支援灾区”共捐款900元,捐款情况如下表:
表中捐款10元和20元的人数不小心被墨水污染,看不清楚,请你确定表中的数据.