如图,一段河坝的横截面为梯形ABCD,试根据图中数据,求出坝底宽AD.(i=CE:ED,单位:m)
(第(1)题4分、第(2)题5分,共9分)(1) 计算:+. (2)抛物线的部分图象如图所示,①求出函数解析式;②写出与图象相关的2个正确结论:(对称轴方程,图象与x正半轴、y轴交点坐标例外)
和是绕点旋转的两个相似三角形,其中与、与为对应角.(1)如图1,若和分别是以与为顶角的等腰直角三角形,且两三角形旋转到使点、、在同一条直线上的位置时,请直接写出线段与线段的关系;(2)若和为含有角的直角三角形,且两个三角形旋转到如图2的位置时,试确定线段与线段的关系,并说明理由;(3)若和为如图3的两个三角形,且=,,在绕点旋转的过程中,直线与夹角的度数是否改变?若不改变,直接用含、的式子表示夹角的度数;若改变,请说明理由.
(本小题满分7分)如图,已知抛物线y1=-x2+bx+c经过A(1,0),B(0,-2)两点,顶点为D.(1)求抛物线y1 的解析式;(2)将△AOB绕点A逆时针旋转90°后,得到△AO′ B′ ,将抛物线y1沿对称轴平移后经过点B′ ,写出平移后所得的抛物线y2 的解析式;(3)设(2)的抛物线y2与轴的交点为B1,顶点为D1,若点M在抛物线y2上,且满足△MBB1的面积是△MDD1面积的2倍,求点M的坐标.
(本题7分)对于二次函数,如果当取任意整数时,函数值都是整数,此时称该点(,)为整点,该函数的图象为整点抛物线(例如:).(1)请你写出一个整点抛物线的解式 .(不必证明);(2)请直接写出整点抛物线与直线围成的阴影图形中(不包括边界)所含的整点个数 .
(本题6分)已知:如图,△ABC是等边三角形,D是AB边上的点,将DB绕点D顺时针旋转60°得到线段DE,延长ED交AC于点F,连结DC、AE.(1)求证:△ADE≌△DFC;(2)过点E作EH∥DC交DB于点G,交BC于点H,连结AH.求∠AHE的度数;(3)若BG=,CH=2,求BC的长.