(本小题满分12分)袋中装有35个球,每个球上都标有1到35的一个号码,设号码为n的球重克,这些球等可能地从袋中被取出.(1)如果任取1球,试求其重量大于号码数的概率;(2)如果不放回任意取出2球,试求它们重量相等的概率;(3)如果取出一球,当它的重量大于号码数,则放回,搅拌均匀后重取;当它的重量小于号码数时,则停止取球.按照以上规则,最多取球3次,设停止之前取球次数为,求E.
在平面直角坐标系中,△ABC的两个顶点A,B的坐标分别为A(-1,0),B(1,0),平面 内两点G,M同时满足下列条件①++=0;②||=||=||;③∥.(Ⅰ)求△ABC的顶点C的轨迹方程;(Ⅱ)是否存在过点P(3,0)的直线l与(Ⅰ)中轨迹交于E、F两点,且OE⊥OF?若存在,求出直线l斜率k的值;若不存在,说明理由.
已知函数. (Ⅰ)若函数的图象在点处的切线与直线垂直, 求函数的单调区间;(Ⅱ)求函数在区间上的最大值.
已知点P,参数,点Q在直线上,求的最大值。
设直线. 若直线l与曲线S同时满足下列两个条件:①直线l与曲线S相切且至少有两个切点;②对任意x∈R都有. 则称直线l为曲线S的“上夹线”. (Ⅰ)已知函数.求证:为曲线的“上夹线”. (Ⅱ)观察下图: 根据上图,试推测曲线的“上夹线”的方程,并给出证明.
设,求A的特征值以及属于每个特征值的一个特征向量。