(本小题满分12分)如图,在三棱锥S-ABC中,BC⊥平面SAC,AD⊥SC.(I)求证:AD⊥平面SBC;(II)试在SB上找一点E,使得BC//平面ADE,并证明你的结论.
如图,边长为2的正方形ACDE所在的平面与平面ABC垂直,AD与CE的交点为M,,且AC=BC. (1)求证:平面EBC; (2)求二面角的大小.
已知,且(1-2x)n=a0+a1x+a2x2+a3x3++anxn. (1)求n的值; (2)求a1+a2+a3++an的值.
已知直线的参数方程为(为参数),曲线的极坐标方程为 (1)求曲线的普通方程; (2)求直线被曲线截得的弦长.
在等比数列{an}中,an>0(n∈N*),且a1a3=4,a3+1是a2和a4的等差中项. (1)求数列{an}的通项公式; (2)若数列{bn}满足bn=an+1+log2an(n=1,2,3,…),求数列{bn}的前n项和Sn.
某班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题: (1)求分数在[50,60)的频率及全班人数; (2)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高.