如图,四边形为菱形,为平行四边形,且面面,,设与相交于点,为的中点.(Ⅰ)证明:面;(Ⅱ)若,求与面所成角的大小.
已知的顶点,的平分线所在直线方程为,边上的高所在直线方程为.(Ⅰ)求顶点的坐标;(Ⅱ)求的面积.
若某几何体的三视图(单位:cm)如图所示,(Ⅰ)求此几何体的表面积;(Ⅱ)求此几何体的体积.
已知圆的圆心在轴上,半径为2,直线被圆截得的弦长为,且圆心在直线的上方.(1)求圆的方程;(2)设,(2≤t≤4),若圆是的内切圆,求边所在直线的斜率(用表示)(3)在(2)的条件下求的面积S的最大值及对应的值.
记事件A为“直线与圆相交”(1)若将一颗骰子先后掷两次得到的点数分别记为,求事件A发生的概率(2)若实数满足,求事件A发生的概率.