火车站和汽车站都为旅客提供打包服务,如果长、宽、高分别为x、y、z的箱子按如图所示的方式打包,则打包带的长至少为多少?
如图,已知⊙O 中,AB为直径,CD为⊙O的切线,交AB的延长线于点D,∠D=30°。⑴求∠A的度数;⑵若点F在⊙O上,CF⊥AB,垂足为E,CF=,求图中阴影部分的面积.(结果保留)
如图,在□ABCD中,DE平分∠ADC,EF//AD,求证:四边形AEFD是菱形。
计算(1) (2) (3) (4)
在平面直角坐标系中,抛物线y=x2+(k﹣1)x﹣k与直线y=kx+1交于A,B两点,点A在点B的左侧.(1)如图1,当k=1时,直接写出A,B两点的坐标;(2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求出△ABP面积的最大值及此时点P的坐标;(3)如图2,抛物线y=x2+(k﹣1)x﹣k(k>0)与x轴交于点C、D两点(点C在点D的左侧),在直线y=kx+1上是否存在唯一一点Q,使得∠OQC=90°?若存在,请求出此时k的值;若不存在,请说明理由.
知识迁移:当且时,因为≥,所以≥,从而≥(当时取等号).记函数,由上述结论可知:当时,该函数有最小值为.直接应用:已知函数与函数, 则当_________时,取得最小值为_________.变形应用:已知函数与函数,求的最小值,并指出取得该最小值时相应的的值.实际应用:已知某汽车的一次运输成本包含以下三个部分:一是固定费用,共元;二是燃油费,每千米为元;三是折旧费,它与路程的平方成正比,比例系数为.设该汽车一次运输的路程为千米,求当为多少时,该汽车平均每千米的运输成本最低?最低是多少元?