如图,在正方形ABCD中,F是CD的中点,E是BC边上的一点,且AF平分∠DAE(1)若正方形ABCD的边长为4,BE=3,求EF的长?(2)求证:AE=EC+CD.
2007年5月30日,在“六一国际儿童节”来临之际,某初级中学开展了向山区“希望小学”捐赠图书活动.全校1200名学生每人都捐赠了一定数量的图书.已知各年级人数比例分布扇形统计图如图①所示.学校为了了解各年级捐赠情况,从各年级中随机抽查了部分学生,进行了捐赠情况的统计调查,绘制成如图②的频数分布直方图.根据以上信息解答下列问题:(1)从图②中,我们可以看出人均捐赠图书最多的是_______年级;(2)估计九年级共捐赠图书多少册?(3)全校大约共捐赠图书多少册?
四边形ABCD、DEFG都是正方形,连接AE、CG.(1)求证:AE=CG;(2)观察图形,猜想AE与CG之间的位置关系,并证明你的猜想.
先化简,再求值:,其中.
如图10-1,已知抛物线y = 与x轴交于A、B两点,与y轴交于点C,且OB=OC.(1)求抛物线的函数表达式;(2)若点P是线段AB上的一个动点(不与A、B重合),分别以AP、BP为一边,在直线AB的同侧作等边三角形APM和BPN,求△PMN的最大面积,并写出此时点P的坐标;(3)如图10-2,若抛物线的对称轴与x轴交于点D,F是抛物线上位于对称轴右侧的一个动点,直线FD与y轴交于点E.是否存在点F,使△DOE与△AOC相似?若存在,请求出点F的坐标;若不存在,请说明理由.
如图9-1,已知ABCD是边长为4的正方形,E是CD边上的一个动点,连接AE,AE的延长线交BC的延长线于点P,连接PD.作△ADE的外接圆⊙O.设DE = x,PC = y. (1)求y与x之间的函数关系式; (2)若PD是⊙O的切线,求x的值. (3)过点D作DF⊥AE,垂足为H,交⊙O于点F,直线AF交BC于点G(如图9-2).若x=2,则sin∠BAG的值是_________.