有一边长为的正方形铁片,铁片的四角截去四个边长为的小正方形,然后做成一个无盖方盒。(1)试把方盒的容积表示成的函数;(2)求多大时,做成方盒的容积最大。
(本小题满分12分) 若函数满足下列两个性质: ①在其定义域上是单调增函数或单调减函数; ②在的定义域内存在某个区间使得在上的值域是.则我们称为“内含函数”. (1)判断函数是否为“内含函数”?若是,求出a、b,若不是,说明理由; (2)若函数是“内含函数”,求实数t的取值范围.
(本小题满分12分) 铁路运输托运行李,从甲地到乙地,规定每张客票托运费计算方法是:行李质量不超过50 kg时,按0.25元/kg计算;超过50 kg而不超过100 kg时,其超过部分按0.35元/kg计算;超过100 kg时,其超过部分按0.45元/kg计算. (1)计算出托运费用; (2)若行李质量为56 kg,托运费用为多少?
(本小题满分12分) 若f(x)是定义在(0,+∞)上的增函数,且对一切x,y>0,满足f=f(x)-f(y). (1)求f(1)的值; (2)若f(6)=1,解不等式f(x+3)-f<2.
(本小题满分12分) 已知函数f(x)=是定义在(-∞,+∞)上的奇函数,且=. (1)求函数f(x)的解析式; (2)判断f(x)在(-1,1)上的单调性,并且证明你的结论.
(本小题满分12分) 已知函数f(x)= (1)在给定的直角坐标系内画出f(x)的图象 (2)写出f(x)的单调递增区间与减区间.