先化简,再求值:,其中.
(内江)如图,抛物线与x轴交于点A(,0)、点B(2,0),与y轴交于点C(0,1),连接BC.(1)求抛物线的函数关系式;(2)点N为抛物线上的一个动点,过点N作NP⊥x轴于点P,设点N的横坐标为t(),求△ABN的面积S与t的函数关系式;(3)若且时△OPN∽△COB,求点N的坐标.
(达州)学校为了奖励初三优秀毕业生,计划购买一批平板电脑和一批学习机,经投标,购买1台平板电脑比购买3台学习机多600元,购买2台平板电脑和3台学习机共需8400元.(1)求购买1台平板电脑和1台学习机各需多少元?(2)学校根据实际情况,决定购买平板电脑和学习机共100台,要求购买的总费用不超过168000元,且购买学习机的台数不超过购买平板电脑台数的1.7倍.请问有哪几种购买方案?哪种方案最省钱?
(达州)如图,在平面直角坐标系中,四边形ABCD是菱形,B.O在x轴负半轴上,AO=,tan∠AOB=,一次函数的图象过A、B两点,反比例函数的图象过OA的中点D.(1)求一次函数和反比例函数的表达式;(2)平移一次函数的图象,当一次函数的图象与反比例函数的图象无交点时,求b的取值范围.
(达州)阅读与应用:阅读1:a、b为实数,且a>0,b>0,因为,所以从而(当a=b时取等号). 阅读2:若函数;(m>0,x>0,m为常数),由阅读1结论可知:,所以当,即时,函数的最小值为. 阅读理解上述内容,解答下列问题: 问题1:已知一个矩形的面积为4,其中一边长为x,则另一边长为,周长为2(),求当x= 时,周长的最小值为 ; 问题2:已知函数()与函数(), 当x= 时,的最小值为 ; 问题3:某民办学校每天的支出总费用包含以下三个部分:一是教职工工资4900元;二是学生生活费成本每人10元;三是其他费用.其中,其他费用与学生人数的平方成正比,比例系数为0.01.当学校学生人数为多少时,该校每天生均投入最低?最低费用是多少元?(生均投入=支出总费用÷学生人数)
(达州)在△ABC的外接圆⊙O中,△ABC的外角平分线CD交⊙O于点D,F为上一点,且 连接DF,并延长DF交BA的延长线于点E. (1)判断DB与DA的数量关系,并说明理由; (2)求证:△BCD≌△AFD; (3)若∠ACM=120°,⊙O的半径为5,DC=6,求DE的长.