在等差数列和等比数列中,a1=2b1=2,b6=32,的前20项和S20=230.(Ⅰ)求和;(Ⅱ)现分别从和的前4中各随机抽取一项,写出相应的基本事件,并求所取两项中,满足an>bn的概率.
(本小题满分12分)已知直线的方程为, 求直线的方程, 使得: (1) 与平行, 且过点(-1,3) ;(2) 与垂直, 且与两轴围成的三角形面积为4.
设双曲线C:的左、右顶点分别为A1、A2,垂直于x轴的直线m与双曲线C交于不同的两点。(1)若直线m与x轴正半轴的交点为T,且,求点T的坐标;(2)求直线A1P与直线A2Q的交点M的轨迹E的方程;(3)过点F(1,0)作直线l与(Ⅱ)中的轨迹E交于不同的两点A、B,设,若(T为(1)中的点)的取值范围。
已知离心率为的椭圆过点,为坐标原点,平行于的直线交椭圆于不同的两点。(1)求椭圆的方程。(2)证明:若直线的斜率分别为、,求证:+=0。
如图所示,在长方体中,,,是棱上一点,(1)若为CC1的中点,求异面直线A1M和C1D1所成的角的正切值;(2)是否存在这样的,使得平面ABM⊥平面A1B1M,若存在,求出的值;若不存在,请说明理由。
已知椭圆,左右焦点分别为,(1)若上一点满足,求的面积;(2)直线交于点,线段的中点为,求直线的方程。