设圆的方程为,直线的方程为.(1)求关于对称的圆的方程;(2)当变化且时,求证:的圆心在一条定直线上,并求所表示的一系列圆的公切线方程.
某厂生产产品x件的总成本(万元),已知产品单价P(万元)与产品件数x满足:,生产100件这样的产品单价为50万元,产量定为多少件时总利润最大?
已知函数 (1)求函数的最小正周期; (2)当时,求函数的值域; (3)先将函数的图象向左平移个单位得到函数的图象,再将的图象横坐标扩大到原来的2倍纵坐标不变,得到函数的图象,求证:直线与的图象相切于
在△ABC中,内角A,B,C的对边分别为a,b,c.已知. (Ⅰ)求的值; (Ⅱ)若cosB=,,求的面积.
已知命题p:x∈[1,2],x2-a≥0;命题q:x0∈R,使得x+(a-1)x0+1<0.若“p或q”为真,“p且q”为假,求实数a的取值范围。
已知函数,. (1)若对任意的实数,函数与的图象在处的切线斜率总相等,求的值; (2)若,对任意,不等式恒成立,求实数的取值范围.