如图,已知AB∥CD,直线分别交AB、CD于点E、F,EG平分∠BEF,若∠EFG=40°,则∠EGF的度数是 A、60° B、70° C、80° D、90°
图a是矩形纸片,∠SAB=20°,将纸片沿AB折叠成图b,再沿BN折叠成图c,则图c中的∠TBA的度数是( )
图(1)、图(2)、图(3)分别表示甲、乙、丙三人由A地到B地的路线图。 已知甲的路线为:A®C®B。 乙的路线为:A®D®E®F®B,其中E为AB的中点。丙的路线为:A®G®H®K®B,其中H在AB上,且AH>HB。若符号「®」表示「直线前进」,则根据图(1)、图(2)、图(3)的数据,则三人行进路线长度的大小关系为 (A) 甲=乙=丙 (B) 甲<乙<丙 (C) 乙<丙<甲 (D )丙<乙<甲
抛物线y=ax²+bx+c(a≠0)的对称轴是直线x=2,且经过点p(3‚0).则a+b+c的值为( )
一次函数,若随的增大而增大,则的值可以是( )
已知一组数据的平均数是5,则另一组新数据的平均数是( )