如图,在平行四边形中,为的中点,连接并延长交的延长线于点.(1)求证:;(2)当与满足什么数量关系时,四边形是矩形,并说明理由.
如图,抛物线的图象与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)求点A,B,C的坐标;(2)点M为线段AB上一点(点M不与点A,B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N,若点P在点Q左边,当矩形PMNQ的周长最大时,求△AEM的面积;(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ,过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=DQ,求点F的坐标.
已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D.(1)如图①,当直线l与⊙O 相切于点C时,若∠DAC=30°,求∠BAC的大小;(2)如图②,当直线l与⊙O 相交于点E、F时,若∠DAE=18°,求∠BAF的大小.
某文具店销售一种进价为每本10元的笔记本,为获得高利润,以不低于进价进行销售,结果发现,每月销售量y与销售单价x之间的关系可以近似地看作一次函数:,物价部门规定这种笔记本每本的销售单价不得高于18元.(1)当每月销售量为70本时,获得的利润为多少元;(2)该文具店这种笔记本每月获得利润为w元,求每月获得的利润w元与销售单价x之间的函数关系式,并写出自变量的取值范围;(3)当销售单价定为多少元时,每月可获得最大利润,最大利润为多少元?
如图,AB是⊙O的直径,点F,C是⊙O上两点,且,连接AC,AF,过点C作CD⊥AF交AF延长线于点D,垂足为D.(1)求证:CD是⊙O的切线;(2)若CD=,求⊙O的半径.
已知:y关于x的函数的图象与x轴有交点.(1)求k的取值范围;(2)若,是函数图象与x轴两个交点的横坐标,且满足.①求k的值;②当k≤x≤k+2时,请结合函数图象确定y的最大值和最小值.