我们将能完全覆盖某平面图形的最小圆称为该平面图形的最小覆盖圆.例如线段的最小覆盖圆就是以线段为直径的圆.(1)请分别作出图1中两个三角形的最小覆盖圆(要求用尺规作图,保留作图痕迹,不写作法);(2)探究三角形的最小覆盖圆有何规律?请写出你所得到的结论(不要求证明);(3)某地有四个村庄(其位置如图2所示),现拟建一个电视信号中转站,为了使这四个村庄的居民都能接收到电视信号,且使中转站所需发射功率最小(距离越小,所需功率越小),此中转站应建在何处?请说明理由.
先化简,再求值.已知x2﹣5x﹣14=0,求(x﹣1)(2x﹣1)﹣(x+1)2+1的值.
若x+y=7,求的值.
分解因式:(1)2a3-12a2+18a (2)9a2(x-y)+4b2(y-x)
计算:(1)(2)
某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案: ①买一套西装送一条领带; ②西装和领带都按定价的90%付款. 现某客户要到该服装厂购买西装20套,领带x条(x>20). (1)若该客户按方案①购买,需付款 元(用含x的代数式表示); 若该客户按方案②购买,需付款 元(用含x的代数式表示); (2)若x=30,通过计算说明此时按哪种方案购买较为合算?