已知动点到点的距离,等于它到直线的距离. (Ⅰ)求点的轨迹的方程; (Ⅱ)过点任意作互相垂直的两条直线,分别交曲线于点和.设线段,的中点分别为,求证:直线恒过一个定点; (Ⅲ)在(Ⅱ)的条件下,求面积的最小值.
已知是的导函数,,且函数的图象过点.(1)求函数的表达式;(2)求函数的单调区间和极值.
如图,在四棱锥中,底面为矩形, 为等边三角形,,点为中点,平面平面.(1)求异面直线和所成角的余弦值;(2)求二面角的大小.
已知椭圆C:的左、右焦点分别为,离心率,连接椭圆的四个顶点所得四边形的面积为.(1)求椭圆C的标准方程;(2)设是直线上的不同两点,若,求的最小值.
已知命题表示的曲线是双曲线;命题函数在区间上为增函数,若“”为真命题,“”为假命题,求实数的取值范围.
如图,在底面为平行四边形的四棱锥中,, 平面,且,点是的中点. (1)求证:; (2)求证:平面; (3)求二面角的大小.