如图,菱形中,,为中点,,于点,∥,交于点,交于点.(1)求菱形的面积;(2)求的度数.
阅读下列材料:1×2 = ×(1×2×3-0×1×2),2×3 = ×(2×3×4-1×2×3),3×4 = ×(3×4×5-2×3×4),由以上三个等式相加,可得1×2+2×3+3×4 = ×3×4×5 = 20。读完以上材料,请你计算下列各题:(1)1×2+2×3+3×4+···+10×11(写出过程);(2)1×2+2×3+3×4+···+n×(n+1) = _________;(3)1×2×3+2×3×4+3×4×5+···+7×8×9 = _________。
已知两个全等的直角三角形纸片ABC、DEF,如图(1)放置,点B、D重合,点F在BC上,AB与EF交于点G。∠C=∠EFB=90º,∠E=∠ABC=30º,AB=DE=4。 (1)求证:△EGB是等腰三角形; (2)若纸片DEF不动,问△ABC绕点F逆时针旋转最小_____度时,四边形ACDE成为以ED为底的梯形(如图(2)),求此梯形的高。
某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆。经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李。(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?
如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD、等边△ABE。已知∠BAC=30º,EF⊥AB,垂足为F,连结DF。 (1)试说明AC=EF; (2)求证:四边形ADFE是平行四边形。
已知二次函数的图象如图所示,它与x轴的一个交点坐标为(-1,0),与y轴的交点坐标为(0,3)。(1)求出b,c的值,并写出此二次函数的解析式;(2)根据图象,写出函数值y为正数时,自变量x的取值范围。