某地区一种商品的需求量 y 1 (万件)、供应量 y 2 (万件)与价格(元/件)分别近似满足下列函数关系式: y 1 = - x + 60 , y 2 = 2 x - 36 .需求量为0时,即停止供应.当 y 1 = y 2 时,该商品的价格称为稳定价格,需求量称为稳定需求量. (1)求该商品的稳定价格与稳定需求量; (2)价格在什么范围,该商品的需求量低于供应量? (3)当需求量高于供应量时,政府常通过对供应方提供价格补贴来提高供货价格,以提高供应量.现若要使稳定需求量增加4万件,政府应对每件商品提供多少元补贴,才能使供应量等于需求量?
(本小题满分9分)新农村社区改造中,有一部分楼盘要对外销售.某楼盘共23层,销售价格如下:第八层楼房售价为4000元/米2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套楼房面积均为120米2. 若购买者一次性付清所有房款,开发商有两种优惠方案: 方案一:降价8%,另外每套楼房赠送a元装修基金; 方案二:降价10%,没有其他赠送. (1)请写出售价y(元/米2)与楼层x(1≤x≤23,x取整数)之间的函数关系式; (2)老王要购买第十六层的一套楼房,若他一次性付清购房款,请帮他计算哪种优惠方案更加合算.
(本小题满分9分)如图,点O为Rt△ABC斜边AB上的一点,以OA为半径的⊙O与BC切于点D,与AC交于点E,连接AD. (1)求证:AD平分∠BAC; (2)若∠BAC = 60°,OA = 2,求阴影部分的面积(结果保留).
(本小题满分7分)小强从自己家的阳台上,看一栋楼顶部的仰角为30°,看这栋楼底部的俯角为60°,小强家与这栋楼的水平距离为42m,这栋楼有多高?
(本小题满分7分)“保护环境,人人有责”,为了了解某市的空气质量情况,某校环保兴趣小组,随机抽取了2014年内该市若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出). 请你根据图中提供的信息,解答下列问题: (1)补全条形统计图; (2)估计该市这一年(365天)空气质量达到“优”和“良”的总天数; (3)计算随机选取这一年内的某一天,空气质量是“优”的概率.
如图,⊙E的圆心E(3,0),半径为5,⊙E与y轴相交于A、B两点(点A在点B的上方),与x轴的正半轴相交于点C;直线l的解析式为y=x+4,与x轴相交于点D;以C为顶点的抛物线经过点B. (1)求抛物线的解析式; (2)判断直线l与⊙E的位置关系,并说明理由; (3)动点P在抛物线上,当点P到直线l的距离最小时,求出点P的坐标及最小距离.