如图,是半径为的上的定点,动点从出发,以的速度沿圆周逆时针运动,当点回到地立即停止运动.(1)如果,求点运动的时间;(2)如果点是延长线上的一点,,那么当点运动的时间为时,判断直线与的位置关系,并说明理由.
(本小题满分6分)配餐公司为某学校提供A、B、C三类午餐供师生选择,三类午餐每份的价格分别是:A餐5元,B餐6元,C餐8元.为做好下阶段的营销工作,配餐公司根据该校上周A、B、C三类午餐购买情况,将所得的数据处理后,制成统计表(如下左图);根据以往销售量与平均每份利润之间的关系,制成统计图(如下右图).
请根据以上信息,解答下列问题:(1)该校师生上周购买午餐费用的众数是 元;(2)配餐公司上周在该校销售B餐每份的利润大约是 元;(3)请你计算配餐公司上周在该校销售午餐约盈利多少元?
(本小题满分8分,每题4分) (1)解方程组:; (2)化简:.
如图,有一块三角形材料(△ABC),请你画出一个圆,使其与△ABC的各边都相切.
(本小题满分12分)某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为y =x+150,成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w内(元)(利润 = 销售额-成本-广告费).若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常数,10≤a≤40),当月销量为x(件)时,每月还需缴纳x2 元的附加费,设月利润为w外(元)(利润 = 销售额-成本-附加费).(1)当x = 1000时,y =" " 元/件,w内 =" " 元;(2)分别求出w内,w外与x间的函数关系式(不必写x的取值范围);(3)当x为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值;(4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内还是在国外销售才能使所获月利润较大?参考公式:抛物线的顶点坐标是.
(本小题满分12分)如图16,在直角梯形ABCD中,AD∥BC,,AD = 6,BC = 8,,点M是BC的中点.点P从点M出发沿MB以每秒1个单位长的速度向点B匀速运动,到达点B后立刻以原速度沿BM返回;点Q从点M出发以每秒1个单位长的速度在射线MC上匀速运动.在点P,Q的运动过程中,以PQ为边作等边三角形EPQ,使它与梯形ABCD在射线BC的同侧.点P,Q同时出发,当点P返回到点M时停止运动,点Q也随之停止.设点P,Q运动的时间是t秒(t>0).(1)设PQ的长为y,在点P从点M向点B运动的过程中,写出y与t之间的函数关系式(不必写t的取值范围).(2)当BP = 1时,求△EPQ与梯形ABCD重叠部分的面积.(3)随着时间t的变化,线段AD会有一部分被△EPQ覆盖,被覆盖线段的长度在某个时刻会达到最大值,请回答:该最大值能否持续一个时段?若能,直接写出t的取值范围;若不能,请说明理由.