如图,四边形是一张放在平面直角坐标系中的矩形纸片,点在轴上,点在轴上,将边折叠,使点落在边的点处.已知折叠,且.(1)判断与是否相似?请说明理由;(2)求直线与轴交点的坐标;(3)是否存在过点的直线,使直线、直线与轴所围成的三角形和直线、直线与轴所围成的三角形相似?如果存在,请直接写出其解析式并画出相应的直线;如果不存在,请说明理由.
解分式方程: 1x=2x+3.
计算: |-3|-√9+1.
如图,抛物线 y=x2+bx+c与 x轴交于 A、 B两点,且 A(-1,0),对称轴为直线 x=2.
(1)求该抛物线的函数达式;
(2)直线 l过点 A且在第一象限与抛物线交于点 C.当 ∠CAB=45°时,求点 C的坐标;
(3)点 D在抛物线上与点 C关于对称轴对称,点 P是抛物线上一动点,令 P(xP, yP),当 1⩽, 1 ⩽ a ⩽ 5 时,求 ΔPCD 面积的最大值(可含 a 表示).
如图,在 Rt Δ ABC 中, ∠ C = 90 ° , D 是 AB 上的一点,以 AD 为直径的 ⊙ O 与 BC 相切于点 E ,连接 AE , DE .
(1)求证: AE 平分 ∠ BAC ;
(2)若 ∠ B = 30 ° ,求 CE DE 的值.
如图,在四边形 ABCD 中, AD / / BC , ∠ C = 90 ° , ∠ ADB = ∠ ABD = 1 2 ∠ BDC , DE 交 BC 于点 E ,过点 E 作 EF ⊥ BD ,垂足为 F ,且 EF = EC .
(1)求证:四边形 ABED 是菱形;
(2)若 AD = 4 ,求 ΔBED 的面积.