某校数学课题小组了解到:6个牛奶盒经过工艺处理可以制作成一个卷纸。为了解市民节约和环保意识,该课题小组调查了本市100户经常饮用牛奶的家庭对牛奶的处理方式,并制成如下统计图。(1)这100户家庭中有多少户扔掉牛奶盒?(2)如果该市有1万户经常饮用牛奶的家庭,请估算扔掉牛奶盒的家庭有多少户?(3)若(2)中这1万户家庭每户一年平均饮用90盒牛奶,请估算一年扔掉的牛奶盒可以制作成成多少个卷纸?
如图, AB 是 ⊙ O 的直径, AM 和 BN 是它的两条切线,过 ⊙ O 上一点 E 作直线 DC ,分别交 AM 、 BN 于点 D 、 C ,且 DA = DE .
(1)求证:直线 CD 是 ⊙ O 的切线;
(2)求证: O A 2 = DE · CE .
某水果商店销售一种进价为40元 / 千克的优质水果,若售价为50元 / 千克,则一个月可售出500千克;若售价在50元 / 千克的基础上每涨价1元,则月销售量就减少10千克.
(1)当售价为55元 / 千克时,每月销售水果多少千克?
(2)当月利润为8750元时,每千克水果售价为多少元?
(3)当每千克水果售价为多少元时,获得的月利润最大?
如图,过 ▱ ABCD 对角线 AC 与 BD 的交点 E 作两条互相垂直的直线,分别交边 AB 、 BC 、 CD 、 DA 于点 P 、 M 、 Q 、 N .
(1)求证: ΔPBE ≅ ΔQDE ;
(2)顺次连接点 P 、 M 、 Q 、 N ,求证:四边形 PMQN 是菱形.
如图,在平面直角坐标系中,直线 y = - 1 2 x - 1 与直线 y = - 2 x + 2 相交于点 P ,并分别与 x 轴相交于点 A 、 B .
(1)求交点 P 的坐标;
(2)求 ΔPAB 的面积;
(3)请把图象中直线 y = - 2 x + 2 在直线 y = - 1 2 x - 1 上方的部分描黑加粗,并写出此时自变量 x 的取值范围.
先化简,再求值: 1 - y - x x + 2 y ÷ x 2 - y 2 x 2 + 4 xy + 4 y 2 ;其中 x = cos 30 ° × 12 , y = ( π - 3 ) 0 - ( 1 3 ) - 1 .