一次奥运知识竞赛中,一共有25道题,答对一题得10分,答错(或不答)一题扣5分.设小明同学在这次竞赛中答对道题.(1)根据所给条件,完成下表:
(2)若小明同学的竞赛成绩超过100分,则他至少答对几道题?
在我国古代数学著作《九章算术》中记载了一个有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根新生的芦苇,它高出水面1尺,如图所示,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.那么水深多少?芦苇长为多少?
已知,如图,四边形ABCD中,∠ABC=∠ADC=90°,M、N分别是AC、BD的中点.试证明:(1)MD=MB;(2)MN⊥BD.
如图,有一块四边形花圃ABCD,∠A=90°,AD=6m,AB=8m,BC=24m,DC=26m,若在这块花圃上种植花草,已知每种植1m2需50元,则共需多少元?
如图:已知∠AOB和C、D两点,用尺规作图,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.
如图1,△ABC中,CD⊥AB于D,且BD :AD :CD=2 :3 :4.(1)试说明△ABC是等腰三角形;(2)已知S△ABC=40cm2,如图2,动点M从点B出发以每秒1cm的速度沿线段BA向点A 运动,同时动点N从点A出发以相同速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止.设点M运动的时间为t(秒).①若△DMN的边与BC平行,求t的值;②若点E是边AC的中点,问在点M运动的过程中,△MDE能否成为等腰三角形?若能,求出t的值;若不能,请说明理由.