由于对某种商品开始收税,使其定价比原定价上涨x成(即上涨率为),涨价后,商品卖出个数减少bx成,税率是新定价的a成,这里a,b均为正常数,且a<10,设售货款扣除税款后,剩余y元,要使y最大,求x的值.
已知函数的图象的一部分如图所示.(Ⅰ)求函数的解析式;(Ⅱ)当时,求函数的最值
如图,在△ABC中,设BC,CA, AB的长度分别为a,b,c,证明:a2=b2+c2-2bccosA
已知椭圆C:的四个顶点恰好是一边长为2,一内角为的菱形的四个顶点.(I)求椭圆C的方程;(II)若直线y =" k" x 交椭圆C于A,B两点,在直线l:x+y-3=0上存在点P,使得ΔPAB为等边三角形,求k的值.
已知函数f(x) ="lnx" g(x) =-(1)当a=1时,若曲线y=f(x)在点M (x0,f(x0))处的切线与曲线y=g(x)在点P (x0, g(x0))处的切线平行,求实数x0的值;(II)若(0,e],都有f(x)≥g(x) ,求实数a的取值范围.
如图1,在直角梯形中,AD//BC, =900,BA="BC" 把ΔBAC沿折起到的位置,使得点在平面ADC上的正投影O恰好落在线段上,如图2所示,点分别为线段PC,CD的中点.(I) 求证:平面OEF//平面APD;(II)求直线CD与平面POF(III)在棱PC上是否存在一点,使得到点P,O,C,F四点的距离相等?请说明理由.