如图是一个“有理数转换器”(箭头是指数进入转换器的路径,方框是对进入的数进行转换的转换器)(1)当小明输入3;—4,;—201这四个数时,这四次输出的结果分别是: (2)你认为当输入什么数时,其输出结果是0 ? (3)你认为这个“有理数转换器”不可能输出什么数? (4)有一次,小明在操作的时候,输出的结果是2,你判断一下,小明可能输入的是什么数?
计算:(1) (2)
如图,在等腰梯形ABCD中,AB∥DC,AD=BC=5cm,AB=12cm,CD=6cm,点Q从C开始沿CD边向D移动,速度是每秒1厘米,点P从A开始沿AB向B移动,速度是点Q速度的a倍,如果点P,Q分别从A,C同时出发,当其中一点到达终点时运动停止.设运动时间为t秒.已知当t=时,四边形APQD是平行四边形.(1)求a的值;(2)线段PQ是否可能平分对角线BD?若能,求t的值,若不能,请说明理由;(3)若在某一时刻点P恰好在DQ的垂直平分线上,求此时t的值.
如图,在平面直角坐标系中,直线+2与x轴、y轴分别交于A、B两点,以AB为边在第二象限内作正方形ABCD.(1)求点A、B的坐标,并求边AB的长;(2)求点D的坐标;(3)你能否在x轴上找一点M,使△MDB的周长最小?如果能,请求出M点的坐标;如果不能,说明理由.
某化妆品公司每月付给销售人员的工资有两种方案.方案一:没有底薪,只拿销售提成;方案二:底薪加销售提成.设x(件)是销售商品的数量,y(元)是销售人员的月工资.如图所示,y1为方案一的函数图象,y2为方案二的函数图象.已知每件商品的销售提成方案二比方案一少7元.从图中信息解答如下问题(注:销售提成是指从销售每件商品得到的销售额中提取一定数量的费用):(1)求y1的函数解析式;(2)请问方案二中每月付给销售人员的底薪是多少元?(3)如果该公司销售人员小丽的月工资要超过1000元,那么小丽选用哪种方案最好?至少要销售商品多少件?
已知一次函数y=kx+b的图像经过点(-2,-4),且与正比例函数的图像相交于点(4,a)。求:(1)a的值;(2)k、b的值;(3)画出这两个函数图像,并求出它们与y轴所围成的三角形的面积.