已知数列的前n项和满足:(a为常数,且). (Ⅰ)求的通项公式; (Ⅱ)设,若数列为等比数列,求a的值;(Ⅲ)在满足条件(Ⅱ)的情形下,设,数列的前n项和为Tn .求证:.
已知点A(-1,6)和B(3,0),在直线AB上求一点P,使||=||.
已知函数(1)将函数化简成的形式,并指出的周期;(2)求函数上的最大值和最小值.
已知数列满足,我们知道当a取不同的值时,得到不同的数列,如当时,得到无穷数列:当时,得到有穷数列:.(Ⅰ)求当为何值时;(Ⅱ)设数列满足, ,求证:取数列中的任一个数,都可以得到一个有穷数列;(Ⅲ)若,求的取值范围.
若函数满足下列条件:在定义域内存在使得成立,则称函数具有性质;反之,若不存在,则称函数不具有性质。(1)证明:函数具有性质,并求出对应的的值;(2)已知函数具有性质,求的取值范围
探究函数,x∈(0,+∞)的最小值,并确定相应的x的值,列表如下:
请观察表中y值随x值变化的特点,完成下列问题:(1)若函数,(x>0)在区间(0,2)上递减,则在 上递增;(2)当x= 时,,(x>0)的最小值为 ;(3)试用定义证明,(x>0)在区间(0,2)上递减;(4)函数,(x<0)有最值吗?是最大值还是最小值?此时x为何值?(5)解不等式.解题说明:(1)(2)两题的结果直接填写在横线上;(4)题直接回答,不需证明。