(本小题满分10分)选修4-4:坐标系与参数方程已知曲线C的极坐标方程是.以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是:(是参数).(1)将曲线的极坐标方程和直线参数方程转化为普通方程;(2)若直线与曲线相交于A、B两点,且,试求实数值.
已知,且,1,2,3,…. (1)求,,; (2)求数列的通项公式; (3)当且时,证明:对任意都有成立.
已知点是椭圆:的一个顶点,椭圆的离心率为. (1)求椭圆的方程; (2)已知点是定点,直线:交椭圆于不同的两点,,记直线,的斜率分别为,,求点的坐标,使得恒为0.
已知函数,其中且. (1)当时,若无解,求的范围; (2)若存在实数,(),使得时,函数的值域都也为,求的范围.
在四棱锥中,平面,底面为直角梯形,,,且,分别为,的中点. (1)求证:平面; (2)若直线与平面的交点为,且,求截面与底面所成锐二面角的大小.
在中,角,,所对的边分别为,,,为边上的高,已知,. (1)若,求; (2)求的最大值.