检修组乘汽车,沿公路检修线路,约定向东为正,向西为负,某天自A地出发, 到收工时,行走记录为(单位:千米): +8、-9、+4、+7、-2、-10、+18、-3、+7、+5回答下列问题:(1)收工时在A地的哪边?距A地多少千米? (2)若每千米耗油0.3升,问从A地出发到收工时,共耗油多少升?
如图所示,AB=AC,AB为⊙O的直径,AC、BC分别交⊙O于E、D,连结ED、BE. (1)试判断DE与BD是否相等,并说明理由; (2)如果BC=6,AB=5,求BE的长.
已知二次函数,是不为0的常数. (1)除0以外,不论取何值时,这个二次函数的图像一定会经过两个定点,请你求出这两个定点中的其中一个; (2)如果该二次函数的顶点不在直线的右侧,求的取值范围.
某公园中央地上有一个大理石球,小明想测量球的半径,于是找了两块厚10cm的砖塞在球的两侧(如图所示),他量了下两砖之间的距离刚好是60cm,聪明的你也能算出这个大石球的半径吗?写出你的计算过程.
已知一次函数的图象与双曲线交于点A(-1,),且过点(0,1). (1)求该一次函数的解析式; (2)求一次函数与反比例函数图象的另一个交点B,写出使一次函数的值大于反比例函数的值的的取值范围.
已知在正方形的网格中,网线的交点称为格点,如图,点A、B、C都是格点.每个小正方形的边长为1个单位长度,若在网格中建立坐标系,则A的坐标为(-1,3),B的坐标为(1,3),C的坐标为(3,1). (1)利用正方形网格,直接用圆规作过A、B、C三点的圆,并写出圆心O的坐标; (2)在(1)中所作的⊙O外,在这8×8的网格中找到一个格点P,作△PAC,使得△PAC的面积与△ABC的面积相等,并写出点P的坐标.(写出一个即可)