如图,从边长为的正方形铁皮的四个角各截去一个边长为的小正方形,再将四边向上折起,做成一个无盖的长方体铁盒,且要求长方体的高度与底面正方形的边长的比不超过常数,问:取何值时,长方体的容积V有最大值?
(本小题满分12分)如图,垂直于梯形所在的平面,.为中点,,四边形为矩形,线段交于点N . (1)求证:// 平面; (2)求二面角的大小; (3)在线段上是否存在一点,使得与平面所成角的大小为? 若存在,请求出的长;若不存在,请说明理由.
(本小题满分12分)已知在数列中,,,. (1)证明数列是等差数列,并求的通项公式; (2)设数列的前项和为,证明:.
(本小题满分12分)下图为某校语言类专业N名毕业生的综合测评成绩(百分制)分布直方图,已知80~90分数段的学员数为21人 (Ⅰ)求该专业毕业总人数N和90~95分数段内的人数; (Ⅱ)现欲将90~95分数段内的名毕业生分配往甲、乙、丙三所学校,若向学校甲分配两名毕业生,且其中至少有一名男生的概率为,求名毕业生中男女各几人(男女人数均至少两人)? (Ⅲ)在(Ⅱ)的结论下,设随机变量表示n名毕业生中分配往乙学校的三名学生中男生的人数,求的分布列和数学期望.
【改编】(本小题满分12分)在中,角所对的边为,且满足 (1)求角的值; (2)若且,求的取值范围.
(本小题满分14分)已知函数在点处的切线为. (1)求实数,的值; (2)是否存在实数,当时,函数的最小值为,若存在,求出的取值范围;若不存在,说明理由; (3)若,求证:.