如图,从边长为的正方形铁皮的四个角各截去一个边长为的小正方形,再将四边向上折起,做成一个无盖的长方体铁盒,且要求长方体的高度与底面正方形的边长的比不超过常数,问:取何值时,长方体的容积V有最大值?
如图,在四棱锥中,底面是菱形,,平面,点是的中点,是的中点. (Ⅰ)求证:∥平面; (Ⅱ)求直线与平面所成角的正弦值.
已知函数在处取得极值,且的图象在点处的切线与直线垂直,求: (Ⅰ)的值; (Ⅱ)函数的单调区间.
设函数, (1)当,解不等式,; (2)若的解集为,,求证:
在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:(a>0),过点P(-2,-4)的直线l的参数方程为(t为参数),l与C分别交于M,N. (1)写出C的平面直角坐标系方程和l的普通方程; (2)若|PM|,|MN|,|PN|成等比数列,求a的值.
(本小题满分10分)选修4-l:几何证明选讲在ABC中,D是AB边上一点,ACD的外接圆交BC于点E,AB= 2BE (1)求证:BC= 2BD; (2)若CD平分ACB,且AC =2,EC =1,求BD的长