设命题:函数在区间上单调递减;命题:函数的定义域是.如果命题为真命题,为假命题,求的取值范围.
已知函数的图像与轴的交点至少有一个在原点的右侧,求实数的取值范围。
已知函数的定义域为对定义域内的任意、,都有,且当时,。 (1)求证:是偶函数; (2)求证:在上是增函数; (3)解不等式。
已知函数,其中实数。 (1)若,求曲线在点处的切线方程; (2)若在处取得极值,试求的单调区间。
已知函数是定义在上的偶函数,且时,。 (Ⅰ)求的值; (Ⅱ)求函数的值域; (Ⅲ)设函数的定义域为集合,若,求实数的取值范围。
已知方程组的解集是{},且{}是方程x2+()x+=0的解集的一个真子集; (1)求实数、的值; (2)求方程x2+()x+=0解集的所有真子集.