(本小题满分14分)动圆G与圆外切,同时与圆内切,设动圆圆心G的轨迹为。(1)求曲线的方程;(2)直线与曲线相交于不同的两点,以为直径作圆,若圆C与轴相交于两点,求面积的最大值;(3)已知,直线与曲线相交于两点(均不与重合),且以为直径的圆过点,求证:直线过定点,并求出该点坐标。
某水域一艘装载浓硫酸的货船发生侧翻,导致浓硫酸泄漏,对河水造成了污染.为减少对环境的影响,环保部门迅速反应,及时向污染河道投入固体碱,个单位的固体碱在水中逐渐溶化,水中的碱浓度与时间(小时)的关系可近似地表示为:,只有当污染河道水中碱的浓度不低于时,才能对污染产生有效的抑制作用. (Ⅰ) 如果只投放1个单位的固体碱,则能够维持有效的抑制作用的时间有多长? (Ⅱ) 第一次投放1单位固体碱后,当污染河道水中的碱浓度减少到时,马上再投放1个单位的固体碱,设第二次投放后水中碱浓度为,求的函数式及水中碱浓度的最大值.(此时水中碱浓度为两次投放的浓度的累加)
已知函数. (I)若a=-1,求函数的单调区间; (Ⅱ)若函数的图象在点(2,f(2))处的切线的倾斜角为45o,对于任意的t[1,2],函数是的导函数)在区间(t,3)上总不是单调函数,求m的取值范围; (Ⅲ)求证:
已知椭圆C的中心在原点,焦点在x轴上,离心率为,短轴长为4. (I)求椭圆C的标准方程; (II)直线x=2与椭圆C交于P、Q两点,A、B是椭圆O上位于直线PQ两侧的动点,且直线AB的斜率为. ①求四边形APBQ面积的最大值; ②设直线PA的斜率为,直线PB的斜率为,判断+的值是否为常数,并说明理由.
已知数列{}的前n项和,数列{}满足=. (I)求证数列{}是等差数列,并求数列{}的通项公式; (Ⅱ)设,数列{}的前n项和为Tn,求满足的n的最大值.
如图1,的直径AB=4,点C、D为上两点,且CAB=45°,DAB=60°,F为弧BC的中点.沿直径AB折起,使两个半圆所在平面互相垂直,如图2. (I)求证:OF平面ACD; (Ⅱ)求二面角C—AD—B的余弦值; (Ⅲ)在弧BD上是否存在点G,使得FG平面ACD?若存在,试指出点G的位置;若不存在,请说明理由.