(本小题满分14分)动圆G与圆外切,同时与圆内切,设动圆圆心G的轨迹为。(1)求曲线的方程;(2)直线与曲线相交于不同的两点,以为直径作圆,若圆C与轴相交于两点,求面积的最大值;(3)已知,直线与曲线相交于两点(均不与重合),且以为直径的圆过点,求证:直线过定点,并求出该点坐标。
已知数列是递增的等比数列,且 (Ⅰ)求数列的通项公式; (Ⅱ)设为数列的前n项和,,求数列的前n项和.
已知数列{an}满足a1=1,an-2an-1-2n-1=0(n∈N*,n≥2). (1)求证:数列{}是等差数列; (2)若数列{an}的前n项和为Sn,求Sn.
在△ABC中,内角A,B,C的对边分别为a,b,c,且a>c.已知·=2,cos B=,b=3.求: (1)a和c的值; (2)cos(B-C)的值.
等差数列中,,. (Ⅰ)求数列的通项公式; (Ⅱ)设,求的值.
(本小题满分10分)设函数的最大值为,其中为实数. (1)设,求的取值范围,并把表示为的函数; (2)求.