设,其中a为正实数。(1)当时,求的极值点;(2)若在R不是单调函数,求a的取值范围。
(本小题满分12分) 已知函数的一个周期的图象,如图(1)求的解析式(2)若函数与的图象关于直线对称,求的解析式.
(本小题满分12分) 已知 (1)求的值; (2)求的值.
设椭圆的左,右焦点为,,(1,)为椭圆上一点,椭圆的 长半轴长等于焦距,曲线C是以坐标原点为顶点,以为焦点的抛物线,自引直线交曲线C于P,Q两个不同的交点,点P关于轴的对称点记为M,设. (1)求椭圆方程和抛物线方程; (2)证明:; (3)若求|PQ|的取值范围
(12分)已知一四棱锥的三视图,E是侧棱PC上的动点. (1)求四棱锥的体积; (2)若E点分PC为PE:EC=2:1,求点P到平面BDE的距离; (3)若E点为PC的中点,求二面角D-AE-B的大小.
(12分)等比数列{}的前n项和为, 已知对任意的,点, 均在函数且均为常数)的图像上. (1)求r的值; (2)当b=2时,记求数列的前项和