(本小题满分13分)已知向量m=n=.(1)若m·n=1,求的值;(2)记函数f(x)= m·n,在中,角A,B,C的对边分别是a,b,c,且满足求f(A)的取值范围.
(本小题满分12分)若关于的实系数方程有两个根,一个根在区间内,另一根在区间内,记点对应的区域为.(1)设,求的取值范围;(2)过点的一束光线,射到轴被反射后经过区域,求反射光线所在直线经过区域内的整点(即横纵坐标为整数的点)时直线的方程.
(本小题满分11分)(注意:在试题卷上作答无效)已知为坐标原点,向量,点是直线上的一点,且点分有向线段的比为.(1)记函数,,讨论函数的单调性,并求其值域;(2)若三点共线,求的值.
(本小题满分10分)(注意:在试题卷上作答无效)已知等比数列中,,分别为的三内角的对边,且.(1)求数列的公比;(2)设集合,且,求数列的通项公式.
( 本小题满分12分)已知集合中的元素都是正整数,且,对任意的且,有.(Ⅰ)求证:;(Ⅱ)求证:;(Ⅲ)对于,试给出一个满足条件的集合
( 本小题满分12分) 已知点是离心率为的椭圆:上的一点.斜率为的直线交椭圆于、两点,且、、三点不重合.(Ⅰ)求椭圆的方程;(Ⅱ)的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由?(Ⅲ)求证:直线、的斜率之和为定值.