( 本小题满分12分) 已知点是离心率为的椭圆:上的一点.斜率为的直线交椭圆于、两点,且、、三点不重合.(Ⅰ)求椭圆的方程;(Ⅱ)的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由?(Ⅲ)求证:直线、的斜率之和为定值.
(10分) 在等差数列中, 求的值
.已知数列满足:,其中为数列的前项和.(Ⅰ)试求的通项公式;(Ⅱ)若数列满足:,试求的前项和公式;(III)设,数列的前项和为,求证:.
已知数列的前项和为,对任意,点都在函数的图像上. (1)求数列的通项公式; (2)设,是数列的前项和,求使得对所有都成立的最小正整数.
、已知向量与共线,其中是的内角,(1)求角的大小; (2)若,求的面积S的最大值,并判断S取得最大值时的形状.
港口北偏东方向的处有一检查站,港口正东方向的处有一轮船,距离检查站为31海里,该轮船从处沿正西方向航行20海里后到达处观测站,已知观测站与检查站距离21海里,问此时轮船离港口还有多远?
C
B