如图,AB是⊙O的直径,点P是⊙O上的动点(P与A,B不重合),连结AP,PB,过点O分别作OE⊥AP于E,OF⊥BP于F.(1)若AB=12,当点P在⊙O上运动时,线段EF的长会不会改变.若会改变,请说明理由;若不会改变,请求出EF的长;(2)若AP=BP,求证四边形OEPF是正方形.
计算:÷
如图:(1)写出A、B、C三点的坐标;(2)若△ABC各顶点的横坐标不变,纵坐标都乘以﹣1,请你在同一坐标系中描出对应的点A′、B′、C′,并依次连接这三个点,所得的△A′B′C′与原△ABC有怎样的位置关系;(3)在②的基础上,纵坐标都不变,横坐标都乘以﹣1,在同一坐标系中描出对应的点A″、B″、C″,并依次连接这三个点,所得的△A″B″C″与原△ABC有怎样的位置关系.
已知A(﹣1,2)和B(﹣3,﹣1).试在y轴上确定一点P,使其到A、B的距离和最小,求P点的坐标.
如图,已知牧马营地在P处,每天牧马人要赶着马群先到河边饮水,再带到草地吃草,然后回到营地,请你替牧马人设计出最短的放牧路线. .
如图,仿照例子利用“两个圆、两个三角形和两条平行线段”设计一个轴对称图案,并说明你所要表达的含义.