如图所示,在△ABC中,∠ABC=∠ACB.(1)尺规作图:过顶点A作△ABC的角平分线AD;(不写作法,保留作图痕迹)(2)在AD上任取一点E,连接BE、CE.求证:△ABE≌△ACE.
计算:(1)
如图,在平面直角坐标系中,直线y=x+1分别与两坐标轴交于B,A两点,C为该直线上的一动点,以每秒1个单位长度的速度从点A开始沿直线BA向上移动,作等边△CDE,点D和点E都在x轴上,以点C为顶点的抛物线y=a(x﹣m)2+n经过点E.⊙M与x轴、直线AB都相切,其半径为3(1﹣)a. (1)求点A的坐标和∠ABO的度数; (2)当点C与点A重合时,求a的值; (3)点C移动多少秒时,等边△CDE的边CE第一次与⊙M相切?
阅读下列材料,然后解答后面的问题. 我们知道方程2x+3y=12有无数组解,但在实际生活中我们往往只需要求出其正整数解. 例:由2x+3y=12,得,(x、y为正整数) ∴,解得0<x<6. 又为正整数,则为正整数. 由2与3互质,可知:x为3的倍数,从而x=3,代入. ∴2x+3y=12的正整数解为 问题: (1)请你写出方程2x+y=5的一组正整数解: ; (2)若为自然数,则满足条件的x值有 个;
(3)七年级某班为了奖励学习进步的学生,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费35元,问有几种购买方案?
如图,已知A(﹣4,0),B(0,4),现以A点为位似中心,相似比为9:4,将OB向右侧放大,B点的对应点为C. (1)求C点坐标及直线BC的解析式; (2)一抛物线经过B、C两点,且顶点落在x轴正半轴上,求该抛物线的解析式并画出函数图象; (3)现将直线BC绕B点旋转与抛物线相交与另一点P,请找出抛物线上所有满足到直线AB距离为的点P.
(1)分解因式:; (2)先化简,再求值:,其中.