在数列中,,,。(Ⅰ)计算,,的值; (Ⅱ)猜想数列的通项公式,并用数学归纳法加以证明.
已知函数(Ⅰ)当时,求的极值; (Ⅱ)若在区间上是增函数,求实数的取值范围.
设命题:实数满足,其中;命题:实数满足且的必要不充分条件,求实数的取值范围.
已知集合,,求(1);(2).
已知函数,为函数的导函数. (1)设函数f(x)的图象与x轴交点为A,曲线y=f(x)在A点处的切线方程是,求的值;(2)若函数,求函数的单调区间.
在平面直角坐标系中,动点到两点,的距离之和等于,设点的轨迹为曲线,直线过点且与曲线交于,两点.(1)求曲线的轨迹方程;(2)是否存在△面积的最大值,若存在,求出△的面积;若不存在,说明理由.