如图,己知双曲线y=(x>0)与经过点A(1,0)、B(0,1)的直线交于P、Q两点,连结OP、OQ.(1)求△OPQ的面积.(2)试说明:△OAQ≌△OBP(3)若C是OA上不与O、A重合的任意一点,CA=a(0<a<1),CD⊥AB于D,DE⊥OB于E.①a为何值时,CE=AC?②线段OA上是否存在点C,使CE∥AB?若存在这样的点,请求出点C的坐标:若不存在,请说明理由.
雅安地震,牵动着全国人民的心,地震后某中学举行了爱心捐款活动,下图是该校九年级某班学生为雅安灾区捐款情况绘制的不完整的条形统计图和扇形统计图. (1)求该班人数; (2)补全条形统计图; (3)在扇形统计图中,捐款“15元人数”所在扇形的圆心角∠AOB的度数; (4)若该校九年级有800人,据此样本,请你估计该校九年级学生共捐款多少元?
如图,在矩形ABCD中,E、F分别是边AB、CD的中点,连接AF,CE. (1)求证:△BEC≌△DFA; (2)求证:四边形AECF是平行四边形.
解方程组:.
如图,在坐标系xOy中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0),B(0,2),抛物线的图象过C点. (1)求抛物线的解析式; (2)平移该抛物线的对称轴所在直线l.当l移动到何处时,恰好将△ABC的面积分为相等的两部分? (3)点P是抛物线上一动点,是否存在点P,使四边形PACB为平行四边形?若存在,求出P点坐标;若不存在,说明理由.
如图,在坐标系xOy中,已知D(﹣5,4),B(﹣3,0),过D点分别作DA、DC垂直于x轴,y轴,垂足分别为A、C两点,动点P从O点出发,沿x轴以每秒1个单位长度的速度向右运动,运动时间为t秒. (1)当t为何值时,PC∥DB; (2)当t为何值时,PC⊥BC; (3)以点P为圆心,PO的长为半径的⊙P随点P的运动而变化,当⊙P与△BCD的边(或边所在的直线)相切时,求t的值.